Лекция 10
ГЛАВА 10 Действия и макеты
Что мы расскажем:
· Мероприятия и макеты
· View и ViewGroup объекты
· Жизненный цикл деятельности
· Расширение Kotlin для Android
Большинству программ нужна точка входа или начальная процедура, с которой начинается все выполнение. Даже простое «Hello World» в предыдущих примерах требовало функции main в качестве точки входа. Программы для Android такие же, для него также нужна собственная версия функции main. Но точка входа в программу для Android - это не просто функция под названием «main» - это немного сложнее. В этой главе мы исследуем структуру базового приложения. Мы рассмотрим, как создавать пользовательские интерфейсы, и узнаем, что им движет.
Точка входа в приложение
Простое приложение, которое показывает экран пользователю, требует, как минимум, трех вещей. Ему требуется
(1) класс Activity, который действует как главный файл программы;
(2) файл макета, содержащий все определения пользовательского интерфейса; и
(3) файл манифеста, который связывает все содержимое проекта вместе.
Если вы все еще помните, как работали с файлом манифеста JavaBean, манифест Android немного похож на него. Он описывает содержание проекта.
Когда приложение запускается, среда выполнения Android создает объект Intent и проверяет файл манифеста. Он ищет конкретное значение узла фильтра намерений; среда выполнения пытается увидеть, есть ли у приложения определенная точка входа, что-то вроде «основной функции». В листинге 10-1 показан отрывок из файла манифеста.
Листинг 10-1. Выдержка из AndroidManifest.xml
<activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
<category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

В листинге 10-1 показано объявление для одного Activity. Если приложение имеет более одного действия, вы увидите несколько определений, таких как Листинг 10-1 - по одному для каждого действия. В первой строке определения есть атрибут с именем android: name. Этот атрибут указывает на имя класса Activity. В этом примере имя класса «MainActivity».
Вторая строка объявляет фильтр намерений; когда вы видите что-то вроде android.intent.action.MAIN на узле фильтра намерений, это означает, что Activity является точкой входа для приложения. Когда приложение запускается, это действие, которое будет взаимодействовать с пользователем.
Класс активности
Основной класс Activity отвечает за первоначальное взаимодействие с пользователем. Это класс Kotlin, и в нем мы можем, и часто, делать следующее:
· Выберите, какой файл пользовательского интерфейса использовать. Когда мы вызываем setLayout (xml: file) внутри Activity, она привяжет Activity к xml: file. Это называется «привязка макета». Когда Activity привязывается к макету, экран будет заполнен элементами пользовательского интерфейса, которые пользователи могут коснуться или провести.
· Получить ссылки для просмотра объектов. Объекты просмотра также называются виджетами или элементы управления. Когда у нас есть программная ссылка на объекты представления, мы можем манипулировать ими, изменять их свойства или связывать их с событием. Это называется привязкой к просмотру.
Класс Activity так или иначе наследуется от android.app.Activity. В наших примерах они наследуются от AppCompatActivity; это дочерний элемент FragmentActivity, который, в свою очередь, является потомком android.app.Activity. Мы используем класс AppCompatActivity, чтобы мы могли поместить в наш проект современные элементы пользовательского интерфейса, такие как ToolBars, и по-прежнему запускать их в более старых версиях Android, где ToolBars в противном случае не поддерживаются - следовательно, «Compat» в имени AppCompatActivity.
Когда среда выполнения запускает приложение, которое в конечном итоге запускает Activity, она создает и отслеживает, что происходит с Activity. Каждое действие имеет очень подробный жизненный цикл, и каждое событие жизненного цикла имеет связанную функцию, которую мы можем использовать для настройки поведения приложения.
На рисунке 10-1 (см. в книге) показаны этапы жизненного цикла Activity. Каждое поле показывает состояние Действия на определенном этапе существования. Название вызовов функций встроено в стрелки, соединяющие этапы.
[image:]
Рисунок 10-1. Жизненный цикл деятельности
Когда среда выполнения запускает приложение, она вызывает функцию onCreate () основного Activity, которая переводит состояние Activity в состояние «создано». Вы можете использовать эту функцию для выполнения процедур инициализации, таких как подготовка кодов обработки событий и т. д.
Действие перейдет в следующее состояние, которое будет «запущено»; Активность сейчас видна пользователю, но еще не готова к взаимодействию. Следующее состояние - «возобновлено»; это состояние, в котором приложение взаимодействует с пользователем.
Если пользователь щелкает что-либо, что может запустить другое действие, среда выполнения приостанавливает текущее действие, и оно переходит в состояние «приостановлено». Оттуда, если пользователь возвращается к Activity, вызывается функция onResume () и Activity снова запускается.
С другой стороны, если пользователь решит открыть другое приложение, среда выполнения может «остановить» и в конечном итоге «уничтожить» приложение.
Файл макета
Файл макета содержит объекты представления, которые организованы в иерархию XML. Элементы пользовательского интерфейса, такие как кнопки или текстовые поля, записываются внутри файла XML. Некоторых людей может раздражать мысль о создании пользовательского интерфейса вручную, используя только редактор XML. Но вам не о чем беспокоиться, потому что AS3 упрощает создание пользовательских интерфейсов. Мы можем работать с файлом макета либо в текстовом режиме (ручное редактирование XML), либо мы можем работать с ним в режиме дизайна (WYSIWYG).
На рис. 10-2 показан файл макета, отображаемый в двух возможных режимах: текстовом режиме и режиме дизайна. Вы можете переключать режимы, щелкая по вкладкам «Текст» или «Дизайн» в левой нижней части главного окна редактора. Когда вы изменяете элемент путем редактирования XML, AS3 автоматически обновляет представление представления дизайна. Точно так же, когда вы вносите изменения в представление дизайна, XML-файл обновляется.
[image:]
Рисунок 10-2. Файл макета отображается как в текстовом, так и в режиме дизайна
В листинге 10-2 показан типичный файл макета. Это то, что произведет мастер создания проекта, если вы выбрали создание «пустого» действия.
Листинг 10-2. activity_main.xml
<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.
android.com/apk/res/android
 xmlns:app=http://schemas.android.com/apk/res-auto
 xmlns:tools=http://schemas.android.com/tools
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent" />
</android.support.constraint.ConstraintLayout>

Простой файл макета обычно состоит из двух частей: объявления контейнера и объявлений каждого элемента пользовательского интерфейса внутри него. В листинге 10-2 вторая строка (которая также является корнем XML-документа) - это объявление контейнера. Элемент TextView объявлен как дочерний узел контейнера. Так в файле макета расположены контейнеры и элементы пользовательского интерфейса.
Просмотр и просмотр объектов группы
Объект просмотра - это составная единица. Вы создаете пользовательский интерфейс, размещая один или несколько объектов представления рядом друг с другом или иногда встраивая друг в друга. В соответствии с определением библиотеки Android, существует два типа представлений: «представление» и «группа представлений». Примером объекта View является кнопка или текстовое поле. Эти объекты предназначены для составления вместе с другими представлениями, но они не предназначены для содержания дочерних представлений - они предназначены для автономной работы.
С другой стороны, ViewGroup может содержать дочерние представления - по этой причине их иногда называют контейнерами.
На рис. 10-3 показана иерархия классов некоторых наиболее распространенных элементов пользовательского интерфейса.
[image:]
Рисунок 10-3. Иерархия классов ViewGroup
Каждый элемент пользовательского интерфейса является дочерним по отношению к классу android.view.View. Мы можем использовать предварительно созданные элементы пользовательского интерфейса в Android SDK, такие как TextView, Button, ProgressBars и т. д., или, при необходимости, мы можем создавать собственные элементы управления (виджеты или представления иногда называются «элементами управления») с помощью
(1) подпрограммы - классификация существующих элементов, таких как TextViews;
(2) создание подкласса самого класса View и полное рисование настраиваемого виджета с нуля; или
(3) подклассификация ViewGroup и встраивание в нее других виджетов - это известно, как составное представление (RadioGroup на рис. 10-3 является примером такого рода).
Каждый объект представления в конечном итоге становится объектом Java во время выполнения, но мы работаем с ними как с элементами XML во время разработки. Нам не нужно беспокоиться о том, как Android преобразует XML в объекты Java, потому что этот процесс для нас невидим - он происходит за кулисами. На рис. 10-4 показано логическое представление процесса компиляции Android.
[image:]
Рисунок 10-4. Процесс компиляции Android
Компилятор Kotlin преобразует исходные файлы программы в байт-коды Java. Полученные байтовые коды объединяются со стандартной библиотекой Kotlin для формирования файла DEX.
Файл DEX - это исполняемый файл Dalvik - это исполняемый формат, который понимает среда выполнения Android (ART). Прежде чем файлы dex и другие ресурсы будут упакованы в пакет Android (APK), он также создает в качестве побочного эффекта специальный файл с именем «R.class».
Мы используем R.class для получения ссылки программы на элементы пользовательского интерфейса, которые мы определили в файле макета.
Контейнеры
Помимо создания составных представлений, класс ViewGroup имеет еще одно применение. Они служат основой для менеджеров по верстке. Диспетчер компоновки - это контейнер, который отвечает за управление расположением дочерних представлений на экране относительно контейнера и друг с другом. Android поставляется с парой готовых менеджеров компоновки. В таблице 10-1 показаны некоторые из них.
Таблица 10-1. Менеджеры по компоновке
	Менеджер компоновки
	Описание

	LinearLayout
	помещает виджеты в одну строку или столбец, в зависимости от выбранной ориентации. Каждому виджету может быть присвоено значение веса, которое определяет количество места, которое виджет занимает по сравнению с другими виджетами.

	TableLayout
	упорядочивает виджеты в виде сетки из строк и столбцов.

	FrameLayout
	складывает дочерние представления друг на друга. Последняя запись в XML-файле макета находится наверху стека.

	RelativeLayout
	Представления позиционируются относительно других представлений и контейнера путем указания выравнивания и полей для каждого представления.

	ConstraintLayout
	ConstraintLayout - это новейший макет. Он также позиционирует виджеты относительно друг друга и контейнера (например, RelativeLayout). Но он выполняет макет управления с помощью не только выравнивания и полей, а также вводит идею объекта «ограничения», который привязывает виджет к цели. Этой целью может быть другой виджет или контейнер; или другую точку привязки. Это макет, который мы будем использовать для большинства наших примеров в этой книге.

Теперь, когда у нас есть некоторые практические знания о действиях и макетах, давайте рассмотрим их на уровне кода в следующем разделе.
Привет мир
Давайте создадим новое приложение с пустым действием. Если вы хотите продолжить и поработать над примерами кода, информация о проекте показана в Таблице 10-2.
Таблица 10-2. Информация о проекте для приложения Hello
	Детализация проекта
	Значение

	Название приложения
	CH10Hello

	Домен компании
	Используйте имя своего веб-сайта

	Поддержка Kotlin
	Да

	Форм-фактор
	только для телефона и планшета

	Минимальный SDK
	API 23 Marshmallow

	Вид деятельности
	Пусто

	Название действия
	MainActivity

	Название макета
	activity_main

Когда проект будет создан, вы увидите группу файлов в окне проекта, но нас интересуют только три. На рис. 10-5 показано расположение (1) основного файла программы; (2) манифест; и (3) основной файл макета в окне файла проекта.
[image:]
Рисунок 10-5. CH10Привет, проект
Главный файл макета с именем activity_main.xml находится в папке app app res ➤ layout.
Все элементы пользовательского интерфейса записываются в файл макета.
Главный файл программы, MainActivity.kt, находится в папке с именами пакетов app ➤ java ➤. Это файл Kotlin, который содержит класс, расширяющий действие Android. Если вы хотите сделать что-то в качестве реакции на событие, созданное пользователем, здесь мы пишем логику программы. Не позволяйте папке «java» сбивать вас с толку, все исходные файлы, будь то Java или Kotlin, хранятся в папке «java». Папки «котлин» нет.
Файл манифеста описывает важную информацию о приложении для инструментов сборки Android: ОС Android и Google play. На рис. 10-5 кажется, что файл манифеста находится в приложении ➤ манифестах ➤ AndroidManifest.xml. Вы должны помнить, что мы смотрим на «Android View» окна проекта. Это логическое представление файлов проекта, а не буквальное расположение файлов относительно корневой папки проекта. Если вы хотите увидеть фактическое расположение файлов проекта, переключитесь в «Представление проекта», как показано на рисунке 10-6.
[image:]
Рисунок 10-6. CH10Hello, в обзоре проекта
В представлении «Проект» отображается фактическое расположение всех файлов проекта. Оно выглядит намного более загруженным, чем «представление Android», но, если вам нужно найти какой-либо файл в проекте, это представление может быть полезно. Теперь мы можем вернуться к «представлению Android», которое мы будем использовать на протяжении большей части книги.
Давайте подробнее рассмотрим созданный макет и файлы MainActivity. Коды показаны в листингах 10-3 и 10-4 соответственно.
Листинг 10-3. activity_main.xml
<? xml version = "1.0" encoding = "utf-8"?>
<android.support.constraint.ConstraintLayout ➊
xmlns: android = "http://schemas.android.com/apk/res/android"
xmlns: app = "http://schemas.android.com/apk/res-auto"
xmlns: tools = "http://schemas.android.com/tools"
android: layout_width = "match_parent"
android: layout_height = "match_parent"
tools: context = ". MainActivity">
 <TextView ➋
 android: id = "@ + id / привет"
 android: layout_width = "wrap_content"
 android: layout_height = "wrap_content"
 android: text = "Hello World!"
 app: layout_constraintBottom_toBottomOf = "parent" ➌
 app: layout_constraintLeft_toLeftOf = "родительский"
 app: layout_constraintRight_toRightOf = "родительский"
 app: layout_constraintTop_toTopOf = "parent" />
</android.support.constraint.ConstraintLayout>

➊ Корневой узел файла макета, в котором также указывается, какой тип диспетчера макета действует. В этом случае мы используем менеджер ConstraintLayout
➋ Объявление объекта TextView. Это дочерний узел менеджера по расположению.
➌ Определяет одно из ограничений объекта TextView. В нем говорится, что в нижней части TextView есть точка привязки, и она привязана к нижней части контейнера.
Листинг 10-4. MainActivity.Kt
package com.example.ted.ch10hello
import android.support.v7.app.AppCompatActivity
import android.os.Bundle
class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) { ➊
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main) ➋
 }
}
➊ Самый первый из методов жизненного цикла Activity. Среда выполнения может передавать или не передавать объект Bundle функции. Объект пакета обычно содержит данные из предыдущего состояния Activity (например, когда вы собираете данные от пользователя, вы можете захотеть сохранить их в Bundle, когда Activity перейдет в состояние «приостановлено», чтобы в случае прерывания пользователя - обычно с помощью другого действия - вам не нужно будет просить пользователя ввести данные снова, потому что они уже находятся в пакете).
➋ Функция setContent () связывает это действие с конкретным файлом макета. Класс «R» был сгенерирован инструментом aapt в процессе сборки Android; он содержит программную ссылку на все, что мы объявили в папке приложения. В этом заявлении мы связываем MainActivity.Kt с R.layout.activity_main.
Теперь, когда мы знаем, что дал нам мастер проекта, давайте внесем изменения в приложение.
Модификация Hello World
Мы внесем небольшие изменения как в файл макета, так и в Activity. Мы сделаем следующее:
1. Измените текст в текущем элементе управления TextView.
2. Добавьте кнопку на экран, мы поместим ее прямо под TextView.
3. Добавьте функцию в Activity. Функция будет увеличивать текущее значение TextView.
4. Мы свяжем нашу новую функцию с кнопкой, чтобы каждый раз, когда мы нажимаем кнопку, значение TextView увеличивалось на 1.
На рис. 10-7 показан общий вид нашего проекта внутри AS3. В настоящее время мы просматриваем файл activity_main.xml в режиме разработки. Находясь в этом режиме, мы можем видеть палитру вида, поверхность дизайна и поверхность чертежа.
[image:]
Рисунок 10-7. CH10 Привет показано в режиме дизайна
Чтобы добавить элемент управления Button, перетащите кнопку из палитры View в область конструктора, как показано на рис. 10-8 - вы также можете перетащить ее на поверхность blueprint, что также будет работать.
[image:]
Рисунок 10-8. Перетащите элементы управления из палитры просмотра
Элемент управления Button пока не имеет ограничений, потому что мы их не добавляли.
Ограничения не добавляются автоматически при добавлении элемента управления в область конструктора.
TextView имеет ограничения, потому что они были созданы мастером при создании проекта. На рис. 10-9 показано представление нашего проекта во время выполнения и разработки в его нынешнем виде.
[image:][image:]

Рисунок 10-9. Кнопка без ограничения
Hello TextView удобно расположен по центру экрана, поскольку имеет четыре точки привязки (ограничения). Кнопка отображается прямо под текстом Hello во время разработки, но во время выполнения она находится в позиции 0,0 (вверху слева) экрана - именно так элементы управления размещаются во время выполнения, когда у них нет ограничений.
Давайте начнем заново. Удалите все существующие ограничения в области конструктора. Вы можете сделать это, выбрав все элементы управления и нажав кнопку «Очистить ограничения», как показано на рисунке 10-10.
[image:]
Рисунок 10-10. Четкие ограничения
Когда все ограничения удалены, переместите элементы управления на поверхность конструктора так, как вы хотите, чтобы они отображались во время выполнения. Затем снова выберите все элементы управления - вы можете сделать это, щелкнув и перетащив мышь вокруг элементов управления.
Чтобы «волшебным образом» добавить все ограничения для наших элементов управления, нажмите «Infer constraints», как показано на рисунке 10-11. AS3 попытается наилучшим образом угадать необходимые ограничения для элементов управления, которые будут соответствовать вашему расположению в области разработки.
[image:]
Рисунок 10-11. Предполагаемые ограничения
Свойства элементов управления можно задать в окне «Атрибуты». Нам нужно изменить некоторые свойства элементов управления TextView и Button. Свойства объекта появятся в окне атрибутов, когда объект будет выбран в области конструктора, как показано на рисунке 10-12.
[image:]
Рисунок 10-12. Окно атрибутов
Окно атрибутов содержит все свойства выбранного объекта просмотра, но по умолчанию не показывает их все. Он показывает только те свойства, которые мы обычно используем. Чтобы просмотреть все свойства, нажмите кнопку «просмотреть все атрибуты», как показано на рисунке 10-12.
Измените свойство «ID» TextView на «textHello», как показано на рисунке 10-12.
Затем измените «textApperance» на «Material.LARGE» - вам нужно прокрутить немного вниз в окне атрибутов, чтобы увидеть свойство «textApperance».
Свойство ID объекта представления важно, потому что оно делает объект представления доступным из нашего кода (класс Activity).
Следующим атрибутом, который нам нужно изменить, является свойство onClick кнопки. Выберите кнопку, затем найдите свойство «onClick». Возможно, вам придется отобразить все атрибуты кнопки и прокрутить вниз, пока не дойдете до свойства onClick.
Введите «addNumber» в свойство onClick кнопки, как показано на рисунке 10-13.
[image:]
Рисунок 10-13. Свойство onClick кнопки
Это действие свяжет событие щелчка кнопки с функцией addNumber () в классе MainActivity. Конечно, мы еще не написали функцию, но ничего страшного, потому что скоро мы ее реализуем.
Мы закончили работу с файлом макета. Теперь мы можем работать над классом MainActivity.
Откройте MainActivity.Kt в главном редакторе и внесите следующие изменения, как показано в листинге 10-5.

Листинг 10-5. MainActivity.Kt
class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 findViewById<TextView>(R.id.textHello).text = "1"
 }
}

Здесь никаких сюрпризов. Последний оператор в функции onCreate () получает ссылку на объект textHello и устанавливает для свойства text значение «1». Это уже большое улучшение.
Помните, что в Java этот оператор выглядел бы как листинг 10-6.
Листинг 10-6. Как установить свойство во время выполнения в Java
TextView helloText = (TextView) findViewById (R.id.textHello);
helloText.setText ("1")
В Kotlin мы получаем приятный синтаксический сахар для геттеров и сеттеров. Но мы все еще можем вырезать еще один шаблонный код. AS3 автоматически поставляется с подключаемым модулем Kotlin Android Extensions и уже объявляется в файле build.gradle уровня модуля всякий раз, когда создается новый проект. На рис. 10-14 показан файл build.gradle и его содержимое.
[image:]
Рисунок 10-14. build.gradle, уровень модуля
Gradle заменил Apache Ant в качестве инструмента сборки. Обычно вам не нужно ничего менять в файле gradle, потому что в большинстве случаев с содержимым по умолчанию все в порядке.
Возвращаясь к коду, в листинге 10-7 показана полная программа для MainActivity.Kt, которая реализует логику увеличения значения textHello при каждом нажатии кнопки.
Листинг 10-7. MainActivity.Kt
import android.support.v7.app.AppCompatActivity
import android.os.Bundle
import android.view.View
import android.widget.TextView
import kotlinx.android.synthetic.main.activity_main.* ➊
class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 textHello.text = "1" ➋
 }
 fun addNumber(v: View) { ➌
 val currVal = textHello.text.toString().toInt() ➍
 val nextVal = currVal + 1
 textHello.text = nextVal.toString() ➎
 }
}

➊ Этот оператор импортирует расширение Kotlin для Android. Возможно, вам не придется вводить это самостоятельно - AS3 добавляет его автоматически, как только вы пытаетесь выполнить привязку представления с использованием идентификатора объекта представления.
➋ Нам больше не нужно использовать findViewById (); нам даже не нужно использовать R.class для уточнения идентификатора объекта представления. Расширения Android Kotlin Extensions открывают представления нашему коду с гораздо меньшей церемонией. В результате код становится намного чище. Обратите также внимание на то, что мы получаем красивый синтаксис getter и setter, добавленный Kotlin.
➌ Функция addNumber () связана с событием onClick элемента управления Button. Эта функция является обработчиком события - эта функция будет вызвана при нажатии кнопки. Ей нужно принять объект View в качестве параметра, поскольку это требование для обработчика событий. Функция должна иметь доступ к объекту представления, вызвавшему событие.
➍ textHello.text возвращает текущее значение textHello как тип CharSequence. ToString () преобразует его в тип String, который мы можем преобразовать в Int с помощью функции toInt (). Нам нужно значение Int, потому что мы будем использовать его в математической операции.
➎ Этот оператор устанавливает для свойства text свойства textHello новое значение.
Когда вы закончите редактирование, запустите приложение на AVD. На рис. 10-15 показан проект, работающий в эмуляторе.
[image:]
Рисунок 10-15. CH10 Hello работает на эмуляторе

Краткое содержание главы
· Точка входа для приложения Android требует трех файлов: файл манифеста, файл макета и класс Activity
· Файл AndroidManifest объявляет все содержимое Android-проекта. В манифесте можно указать класс Activity, который будет служить точкой входа в приложение.
· Файл макета описывает структуру пользовательского интерфейса экрана. Каждый элемент описывается как узел XML, но файл XML раздувается во время выполнения. В процессе надувания создаются объектные представления элементов пользовательского интерфейса Java.
· Все элементы пользовательского интерфейса наследуются от класса android.view.View.
· Составные представления могут быть созданы путем наследования от класса ViewGroup.
· Менеджеры компоновки предоставляют способы упорядочивания элементов пользовательского интерфейса на экране. В Android SDK есть множество готовых менеджеров, которые мы можем использовать прямо из коробки.
· Расширения Kotlin для Android позволяют нам упростить коды привязки представления, раскрывая свойства и функции элементов представления. Нам больше не нужно использовать findViewById.
В следующей главе мы узнаем, как:
· Работать с некоторыми основными элементами представления, такими как кнопки и тосты.
· Использовать расширения Kotlin для Android, чтобы получить ссылки на объекты View; заменять ButterKnife
· [bookmark: _GoBack]Обработка щелчков и долгих нажатий; мы будем использовать как полную форму, используя полный синтаксис объектных выражений, так и сокращенную форму, используя лямбда-выражения
image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image11.emf

image12.emf

image13.emf

image14.emf

image15.emf

image16.emf

image1.emf

image2.emf

image3.emf

image4.emf

image5.emf

